
Json	python	module

http://foaptoa.com/c3?utm_term=json+python+module

Json.dumps	python	module.	Json	to	csv	python	module.	Json.tool	python	module.	Json	load	python	module.	Json2html	python	module.	Jsonpath-rw	python	module.	Python	module	json	validator.	Jsonschema	python	module.

Extensible	JSON	encoder	for	Python	data	structures.	Supports	the	following	objects	and	types	by	default:	Python	JSON	dict	object	list,	tuple	array	str	string	int,	float,	int-	&	float-derived	Enums	number	True	true	False	false	None	null	Changed	in	version	3.4:	Added	support	for	int-	and	float-derived	Enum	classes.	To	extend	this	to	recognize	other
objects,	subclass	and	implement	a	default()	method	with	another	method	that	returns	a	serializable	object	for	o	if	possible,	otherwise	it	should	call	the	superclass	implementation	(to	raise	TypeError).	If	skipkeys	is	false	(the	default),	a	TypeError	will	be	raised	when	trying	to	encode	keys	that	are	not	str,	int,	float	or	None.	If	skipkeys	is	true,	such	items
are	simply	skipped.	If	ensure_ascii	is	true	(the	default),	the	output	is	guaranteed	to	have	all	incoming	non-ASCII	characters	escaped.	If	ensure_ascii	is	false,	these	characters	will	be	output	as-is.	If	check_circular	is	true	(the	default),	then	lists,	dicts,	and	custom	encoded	objects	will	be	checked	for	circular	references	during	encoding	to	prevent	an
infinite	recursion	(which	would	cause	an	RecursionError).	Otherwise,	no	such	check	takes	place.	If	allow_nan	is	true	(the	default),	then	NaN,	Infinity,	and	-Infinity	will	be	encoded	as	such.	This	behavior	is	not	JSON	specification	compliant,	but	is	consistent	with	most	JavaScript	based	encoders	and	decoders.	Otherwise,	it	will	be	a	ValueError	to	encode
such	floats.	If	sort_keys	is	true	(default:	False),	then	the	output	of	dictionaries	will	be	sorted	by	key;	this	is	useful	for	regression	tests	to	ensure	that	JSON	serializations	can	be	compared	on	a	day-to-day	basis.	If	indent	is	a	non-negative	integer	or	string,	then	JSON	array	elements	and	object	members	will	be	pretty-printed	with	that	indent	level.	An
indent	level	of	0,	negative,	or	""	will	only	insert	newlines.	None	(the	default)	selects	the	most	compact	representation.	Using	a	positive	integer	indent	indents	that	many	spaces	per	level.	If	indent	is	a	string	(such	as	"\t"),	that	string	is	used	to	indent	each	level.	Changed	in	version	3.2:	Allow	strings	for	indent	in	addition	to	integers.	If	specified,
separators	should	be	an	(item_separator,	key_separator)	tuple.	The	default	is	(',	',	':	')	if	indent	is	None	and	(',',	':	')	otherwise.	To	get	the	most	compact	JSON	representation,	you	should	specify	(',',	':')	to	eliminate	whitespace.	Changed	in	version	3.4:	Use	(',',	':	')	as	default	if	indent	is	not	None.	If	specified,	default	should	be	a	function	that	gets	called	for
objects	that	can’t	otherwise	be	serialized.	It	should	return	a	JSON	encodable	version	of	the	object	or	raise	a	TypeError.	If	not	specified,	TypeError	is	raised.	Changed	in	version	3.6:	All	parameters	are	now	keyword-only.	default(o)¶	Implement	this	method	in	a	subclass	such	that	it	returns	a	serializable	object	for	o,	or	calls	the	base	implementation	(to
raise	a	TypeError).	For	example,	to	support	arbitrary	iterators,	you	could	implement	default()	like	this:	def	default(self,	o):	try:	iterable	=	iter(o)	except	TypeError:	pass	else:	return	list(iterable)	#	Let	the	base	class	default	method	raise	the	TypeError	return	json.JSONEncoder.default(self,	o)	encode(o)¶	Return	a	JSON	string	representation	of	a	Python
data	structure,	o.	For	example:	>>>	json.JSONEncoder().encode({"foo":	["bar",	"baz"]})	'{"foo":	["bar",	"baz"]}'	iterencode(o)¶	Encode	the	given	object,	o,	and	yield	each	string	representation	as	available.	For	example:	for	chunk	in	json.JSONEncoder().iterencode(bigobject):	mysocket.write(chunk)	Page	2	This	module	provides	access	to	some
variables	used	or	maintained	by	the	interpreter	and	to	functions	that	interact	strongly	with	the	interpreter.	It	is	always	available.	sys.abiflags¶	On	POSIX	systems	where	Python	was	built	with	the	standard	configure	script,	this	contains	the	ABI	flags	as	specified	by	PEP	3149.	Changed	in	version	3.8:	Default	flags	became	an	empty	string	(m	flag	for
pymalloc	has	been	removed).	sys.addaudithook(hook)¶	Append	the	callable	hook	to	the	list	of	active	auditing	hooks	for	the	current	(sub)interpreter.	When	an	auditing	event	is	raised	through	the	sys.audit()	function,	each	hook	will	be	called	in	the	order	it	was	added	with	the	event	name	and	the	tuple	of	arguments.	Native	hooks	added	by
PySys_AddAuditHook()	are	called	first,	followed	by	hooks	added	in	the	current	(sub)interpreter.	Hooks	can	then	log	the	event,	raise	an	exception	to	abort	the	operation,	or	terminate	the	process	entirely.	Calling	sys.addaudithook()	will	itself	raise	an	auditing	event	named	sys.addaudithook	with	no	arguments.	If	any	existing	hooks	raise	an	exception
derived	from	RuntimeError,	the	new	hook	will	not	be	added	and	the	exception	suppressed.	As	a	result,	callers	cannot	assume	that	their	hook	has	been	added	unless	they	control	all	existing	hooks.	See	the	audit	events	table	for	all	events	raised	by	CPython,	and	PEP	578	for	the	original	design	discussion.	Changed	in	version	3.8.1:	Exceptions	derived
from	Exception	but	not	RuntimeError	are	no	longer	suppressed.	CPython	implementation	detail:	When	tracing	is	enabled	(see	settrace()),	Python	hooks	are	only	traced	if	the	callable	has	a	__cantrace__	member	that	is	set	to	a	true	value.	Otherwise,	trace	functions	will	skip	the	hook.	sys.argv¶	The	list	of	command	line	arguments	passed	to	a	Python
script.	argv[0]	is	the	script	name	(it	is	operating	system	dependent	whether	this	is	a	full	pathname	or	not).	If	the	command	was	executed	using	the	-c	command	line	option	to	the	interpreter,	argv[0]	is	set	to	the	string	'-c'.	If	no	script	name	was	passed	to	the	Python	interpreter,	argv[0]	is	the	empty	string.	To	loop	over	the	standard	input,	or	the	list	of
files	given	on	the	command	line,	see	the	fileinput	module.	See	also	sys.orig_argv.	Note	On	Unix,	command	line	arguments	are	passed	by	bytes	from	OS.	Python	decodes	them	with	filesystem	encoding	and	“surrogateescape”	error	handler.	When	you	need	original	bytes,	you	can	get	it	by	[os.fsencode(arg)	for	arg	in	sys.argv].	sys.audit(event,	*args)¶
Raise	an	auditing	event	and	trigger	any	active	auditing	hooks.	event	is	a	string	identifying	the	event,	and	args	may	contain	optional	arguments	with	more	information	about	the	event.	The	number	and	types	of	arguments	for	a	given	event	are	considered	a	public	and	stable	API	and	should	not	be	modified	between	releases.	For	example,	one	auditing
event	is	named	os.chdir.	This	event	has	one	argument	called	path	that	will	contain	the	requested	new	working	directory.	sys.audit()	will	call	the	existing	auditing	hooks,	passing	the	event	name	and	arguments,	and	will	re-raise	the	first	exception	from	any	hook.	In	general,	if	an	exception	is	raised,	it	should	not	be	handled	and	the	process	should	be
terminated	as	quickly	as	possible.	This	allows	hook	implementations	to	decide	how	to	respond	to	particular	events:	they	can	merely	log	the	event	or	abort	the	operation	by	raising	an	exception.	Hooks	are	added	using	the	sys.addaudithook()	or	PySys_AddAuditHook()	functions.	The	native	equivalent	of	this	function	is	PySys_Audit().	Using	the	native
function	is	preferred	when	possible.	See	the	audit	events	table	for	all	events	raised	by	CPython.	sys.base_exec_prefix¶	Set	during	Python	startup,	before	site.py	is	run,	to	the	same	value	as	exec_prefix.	If	not	running	in	a	virtual	environment,	the	values	will	stay	the	same;	if	site.py	finds	that	a	virtual	environment	is	in	use,	the	values	of	prefix	and
exec_prefix	will	be	changed	to	point	to	the	virtual	environment,	whereas	base_prefix	and	base_exec_prefix	will	remain	pointing	to	the	base	Python	installation	(the	one	which	the	virtual	environment	was	created	from).	sys.base_prefix¶	Set	during	Python	startup,	before	site.py	is	run,	to	the	same	value	as	prefix.	If	not	running	in	a	virtual	environment,
the	values	will	stay	the	same;	if	site.py	finds	that	a	virtual	environment	is	in	use,	the	values	of	prefix	and	exec_prefix	will	be	changed	to	point	to	the	virtual	environment,	whereas	base_prefix	and	base_exec_prefix	will	remain	pointing	to	the	base	Python	installation	(the	one	which	the	virtual	environment	was	created	from).	sys.byteorder¶	An	indicator
of	the	native	byte	order.	This	will	have	the	value	'big'	on	big-endian	(most-significant	byte	first)	platforms,	and	'little'	on	little-endian	(least-significant	byte	first)	platforms.	sys.builtin_module_names¶	A	tuple	of	strings	containing	the	names	of	all	modules	that	are	compiled	into	this	Python	interpreter.	(This	information	is	not	available	in	any	other	way
—	modules.keys()	only	lists	the	imported	modules.)	See	also	the	sys.stdlib_module_names	list.	sys.call_tracing(func,	args)¶	Call	func(*args),	while	tracing	is	enabled.	The	tracing	state	is	saved,	and	restored	afterwards.	This	is	intended	to	be	called	from	a	debugger	from	a	checkpoint,	to	recursively	debug	some	other	code.	sys.copyright¶	A	string
containing	the	copyright	pertaining	to	the	Python	interpreter.	sys._clear_type_cache()¶	Clear	the	internal	type	cache.	The	type	cache	is	used	to	speed	up	attribute	and	method	lookups.	Use	the	function	only	to	drop	unnecessary	references	during	reference	leak	debugging.	This	function	should	be	used	for	internal	and	specialized	purposes	only.
sys._current_frames()¶	Return	a	dictionary	mapping	each	thread’s	identifier	to	the	topmost	stack	frame	currently	active	in	that	thread	at	the	time	the	function	is	called.	Note	that	functions	in	the	traceback	module	can	build	the	call	stack	given	such	a	frame.	This	is	most	useful	for	debugging	deadlock:	this	function	does	not	require	the	deadlocked
threads’	cooperation,	and	such	threads’	call	stacks	are	frozen	for	as	long	as	they	remain	deadlocked.	The	frame	returned	for	a	non-deadlocked	thread	may	bear	no	relationship	to	that	thread’s	current	activity	by	the	time	calling	code	examines	the	frame.	This	function	should	be	used	for	internal	and	specialized	purposes	only.	Raises	an	auditing	event
sys._current_frames	with	no	arguments.	sys._current_exceptions()¶	Return	a	dictionary	mapping	each	thread’s	identifier	to	the	topmost	exception	currently	active	in	that	thread	at	the	time	the	function	is	called.	If	a	thread	is	not	currently	handling	an	exception,	it	is	not	included	in	the	result	dictionary.	This	is	most	useful	for	statistical	profiling.	This
function	should	be	used	for	internal	and	specialized	purposes	only.	Raises	an	auditing	event	sys._current_exceptions	with	no	arguments.	sys.breakpointhook()¶	This	hook	function	is	called	by	built-in	breakpoint().	By	default,	it	drops	you	into	the	pdb	debugger,	but	it	can	be	set	to	any	other	function	so	that	you	can	choose	which	debugger	gets	used.	The
signature	of	this	function	is	dependent	on	what	it	calls.	For	example,	the	default	binding	(e.g.	pdb.set_trace())	expects	no	arguments,	but	you	might	bind	it	to	a	function	that	expects	additional	arguments	(positional	and/or	keyword).	The	built-in	breakpoint()	function	passes	its	*args	and	**kws	straight	through.	Whatever	breakpointhooks()	returns	is
returned	from	breakpoint().	The	default	implementation	first	consults	the	environment	variable	PYTHONBREAKPOINT.	If	that	is	set	to	"0"	then	this	function	returns	immediately;	i.e.	it	is	a	no-op.	If	the	environment	variable	is	not	set,	or	is	set	to	the	empty	string,	pdb.set_trace()	is	called.	Otherwise	this	variable	should	name	a	function	to	run,	using
Python’s	dotted-import	nomenclature,	e.g.	package.subpackage.module.function.	In	this	case,	package.subpackage.module	would	be	imported	and	the	resulting	module	must	have	a	callable	named	function().	This	is	run,	passing	in	*args	and	**kws,	and	whatever	function()	returns,	sys.breakpointhook()	returns	to	the	built-in	breakpoint()	function.	Note
that	if	anything	goes	wrong	while	importing	the	callable	named	by	PYTHONBREAKPOINT,	a	RuntimeWarning	is	reported	and	the	breakpoint	is	ignored.	Also	note	that	if	sys.breakpointhook()	is	overridden	programmatically,	PYTHONBREAKPOINT	is	not	consulted.	sys._debugmallocstats()¶	Print	low-level	information	to	stderr	about	the	state	of
CPython’s	memory	allocator.	If	Python	is	built	in	debug	mode	(configure	--with-pydebug	option),	it	also	performs	some	expensive	internal	consistency	checks.	CPython	implementation	detail:	This	function	is	specific	to	CPython.	The	exact	output	format	is	not	defined	here,	and	may	change.	sys.dllhandle¶	Integer	specifying	the	handle	of	the	Python
DLL.	Availability:	Windows.	sys.displayhook(value)¶	If	value	is	not	None,	this	function	prints	repr(value)	to	sys.stdout,	and	saves	value	in	builtins._.	If	repr(value)	is	not	encodable	to	sys.stdout.encoding	with	sys.stdout.errors	error	handler	(which	is	probably	'strict'),	encode	it	to	sys.stdout.encoding	with	'backslashreplace'	error	handler.	sys.displayhook
is	called	on	the	result	of	evaluating	an	expression	entered	in	an	interactive	Python	session.	The	display	of	these	values	can	be	customized	by	assigning	another	one-argument	function	to	sys.displayhook.	Pseudo-code:	def	displayhook(value):	if	value	is	None:	return	#	Set	'_'	to	None	to	avoid	recursion	builtins._	=	None	text	=	repr(value)	try:
sys.stdout.write(text)	except	UnicodeEncodeError:	bytes	=	text.encode(sys.stdout.encoding,	'backslashreplace')	if	hasattr(sys.stdout,	'buffer'):	sys.stdout.buffer.write(bytes)	else:	text	=	bytes.decode(sys.stdout.encoding,	'strict')	sys.stdout.write(text)	sys.stdout.write("")	builtins._	=	value	sys.dont_write_bytecode¶	If	this	is	true,	Python	won’t	try	to	write
.pyc	files	on	the	import	of	source	modules.	This	value	is	initially	set	to	True	or	False	depending	on	the	-B	command	line	option	and	the	PYTHONDONTWRITEBYTECODE	environment	variable,	but	you	can	set	it	yourself	to	control	bytecode	file	generation.	sys.pycache_prefix¶	If	this	is	set	(not	None),	Python	will	write	bytecode-cache	.pyc	files	to	(and
read	them	from)	a	parallel	directory	tree	rooted	at	this	directory,	rather	than	from	__pycache__	directories	in	the	source	code	tree.	Any	__pycache__	directories	in	the	source	code	tree	will	be	ignored	and	new	.pyc	files	written	within	the	pycache	prefix.	Thus	if	you	use	compileall	as	a	pre-build	step,	you	must	ensure	you	run	it	with	the	same	pycache
prefix	(if	any)	that	you	will	use	at	runtime.	A	relative	path	is	interpreted	relative	to	the	current	working	directory.	This	value	is	initially	set	based	on	the	value	of	the	-X	pycache_prefix=PATH	command-line	option	or	the	PYTHONPYCACHEPREFIX	environment	variable	(command-line	takes	precedence).	If	neither	are	set,	it	is	None.
sys.excepthook(type,	value,	traceback)¶	This	function	prints	out	a	given	traceback	and	exception	to	sys.stderr.	When	an	exception	is	raised	and	uncaught,	the	interpreter	calls	sys.excepthook	with	three	arguments,	the	exception	class,	exception	instance,	and	a	traceback	object.	In	an	interactive	session	this	happens	just	before	control	is	returned	to
the	prompt;	in	a	Python	program	this	happens	just	before	the	program	exits.	The	handling	of	such	top-level	exceptions	can	be	customized	by	assigning	another	three-argument	function	to	sys.excepthook.	Raise	an	auditing	event	sys.excepthook	with	arguments	hook,	type,	value,	traceback	when	an	uncaught	exception	occurs.	If	no	hook	has	been	set,
hook	may	be	None.	If	any	hook	raises	an	exception	derived	from	RuntimeError	the	call	to	the	hook	will	be	suppressed.	Otherwise,	the	audit	hook	exception	will	be	reported	as	unraisable	and	sys.excepthook	will	be	called.	sys.__breakpointhook__¶	sys.__displayhook__¶	sys.__excepthook__¶	sys.__unraisablehook__¶	These	objects	contain	the	original
values	of	breakpointhook,	displayhook,	excepthook,	and	unraisablehook	at	the	start	of	the	program.	They	are	saved	so	that	breakpointhook,	displayhook	and	excepthook,	unraisablehook	can	be	restored	in	case	they	happen	to	get	replaced	with	broken	or	alternative	objects.	New	in	version	3.7:	__breakpointhook__	New	in	version	3.8:
__unraisablehook__	sys.exc_info()¶	This	function	returns	a	tuple	of	three	values	that	give	information	about	the	exception	that	is	currently	being	handled.	The	information	returned	is	specific	both	to	the	current	thread	and	to	the	current	stack	frame.	If	the	current	stack	frame	is	not	handling	an	exception,	the	information	is	taken	from	the	calling	stack
frame,	or	its	caller,	and	so	on	until	a	stack	frame	is	found	that	is	handling	an	exception.	Here,	“handling	an	exception”	is	defined	as	“executing	an	except	clause.”	For	any	stack	frame,	only	information	about	the	exception	being	currently	handled	is	accessible.	If	no	exception	is	being	handled	anywhere	on	the	stack,	a	tuple	containing	three	None
values	is	returned.	Otherwise,	the	values	returned	are	(type,	value,	traceback).	Their	meaning	is:	type	gets	the	type	of	the	exception	being	handled	(a	subclass	of	BaseException);	value	gets	the	exception	instance	(an	instance	of	the	exception	type);	traceback	gets	a	traceback	object	which	encapsulates	the	call	stack	at	the	point	where	the	exception
originally	occurred.	sys.exec_prefix¶	A	string	giving	the	site-specific	directory	prefix	where	the	platform-dependent	Python	files	are	installed;	by	default,	this	is	also	'/usr/local'.	This	can	be	set	at	build	time	with	the	--exec-prefix	argument	to	the	configure	script.	Specifically,	all	configuration	files	(e.g.	the	pyconfig.h	header	file)	are	installed	in	the
directory	exec_prefix/lib/pythonX.Y/config,	and	shared	library	modules	are	installed	in	exec_prefix/lib/pythonX.Y/lib-dynload,	where	X.Y	is	the	version	number	of	Python,	for	example	3.2.	Note	If	a	virtual	environment	is	in	effect,	this	value	will	be	changed	in	site.py	to	point	to	the	virtual	environment.	The	value	for	the	Python	installation	will	still	be
available,	via	base_exec_prefix.	sys.executable¶	A	string	giving	the	absolute	path	of	the	executable	binary	for	the	Python	interpreter,	on	systems	where	this	makes	sense.	If	Python	is	unable	to	retrieve	the	real	path	to	its	executable,	sys.executable	will	be	an	empty	string	or	None.	sys.exit([arg])¶	Raise	a	SystemExit	exception,	signaling	an	intention	to
exit	the	interpreter.	The	optional	argument	arg	can	be	an	integer	giving	the	exit	status	(defaulting	to	zero),	or	another	type	of	object.	If	it	is	an	integer,	zero	is	considered	“successful	termination”	and	any	nonzero	value	is	considered	“abnormal	termination”	by	shells	and	the	like.	Most	systems	require	it	to	be	in	the	range	0–127,	and	produce	undefined
results	otherwise.	Some	systems	have	a	convention	for	assigning	specific	meanings	to	specific	exit	codes,	but	these	are	generally	underdeveloped;	Unix	programs	generally	use	2	for	command	line	syntax	errors	and	1	for	all	other	kind	of	errors.	If	another	type	of	object	is	passed,	None	is	equivalent	to	passing	zero,	and	any	other	object	is	printed	to
stderr	and	results	in	an	exit	code	of	1.	In	particular,	sys.exit("some	error	message")	is	a	quick	way	to	exit	a	program	when	an	error	occurs.	Since	exit()	ultimately	“only”	raises	an	exception,	it	will	only	exit	the	process	when	called	from	the	main	thread,	and	the	exception	is	not	intercepted.	Cleanup	actions	specified	by	finally	clauses	of	try	statements
are	honored,	and	it	is	possible	to	intercept	the	exit	attempt	at	an	outer	level.	Changed	in	version	3.6:	If	an	error	occurs	in	the	cleanup	after	the	Python	interpreter	has	caught	SystemExit	(such	as	an	error	flushing	buffered	data	in	the	standard	streams),	the	exit	status	is	changed	to	120.	sys.flags¶	The	named	tuple	flags	exposes	the	status	of	command
line	flags.	The	attributes	are	read	only.	Changed	in	version	3.2:	Added	quiet	attribute	for	the	new	-q	flag.	New	in	version	3.2.3:	The	hash_randomization	attribute.	Changed	in	version	3.3:	Removed	obsolete	division_warning	attribute.	Changed	in	version	3.4:	Added	isolated	attribute	for	-I	isolated	flag.	Changed	in	version	3.7:	Added	the	dev_mode
attribute	for	the	new	Python	Development	Mode	and	the	utf8_mode	attribute	for	the	new	-X	utf8	flag.	sys.float_info¶	A	named	tuple	holding	information	about	the	float	type.	It	contains	low	level	information	about	the	precision	and	internal	representation.	The	values	correspond	to	the	various	floating-point	constants	defined	in	the	standard	header	file
float.h	for	the	‘C’	programming	language;	see	section	5.2.4.2.2	of	the	1999	ISO/IEC	C	standard	[C99],	‘Characteristics	of	floating	types’,	for	details.	attribute	float.h	macro	explanation	epsilon	DBL_EPSILON	difference	between	1.0	and	the	least	value	greater	than	1.0	that	is	representable	as	a	float	See	also	math.ulp().	dig	DBL_DIG	maximum	number
of	decimal	digits	that	can	be	faithfully	represented	in	a	float;	see	below	mant_dig	DBL_MANT_DIG	float	precision:	the	number	of	base-radix	digits	in	the	significand	of	a	float	max	DBL_MAX	maximum	representable	positive	finite	float	max_exp	DBL_MAX_EXP	maximum	integer	e	such	that	radix**(e-1)	is	a	representable	finite	float	max_10_exp
DBL_MAX_10_EXP	maximum	integer	e	such	that	10**e	is	in	the	range	of	representable	finite	floats	min	DBL_MIN	minimum	representable	positive	normalized	float	Use	math.ulp(0.0)	to	get	the	smallest	positive	denormalized	representable	float.	min_exp	DBL_MIN_EXP	minimum	integer	e	such	that	radix**(e-1)	is	a	normalized	float	min_10_exp
DBL_MIN_10_EXP	minimum	integer	e	such	that	10**e	is	a	normalized	float	radix	FLT_RADIX	radix	of	exponent	representation	rounds	FLT_ROUNDS	integer	constant	representing	the	rounding	mode	used	for	arithmetic	operations.	This	reflects	the	value	of	the	system	FLT_ROUNDS	macro	at	interpreter	startup	time.	See	section	5.2.4.2.2	of	the	C99
standard	for	an	explanation	of	the	possible	values	and	their	meanings.	The	attribute	sys.float_info.dig	needs	further	explanation.	If	s	is	any	string	representing	a	decimal	number	with	at	most	sys.float_info.dig	significant	digits,	then	converting	s	to	a	float	and	back	again	will	recover	a	string	representing	the	same	decimal	value:	>>>	import	sys	>>>
sys.float_info.dig	15	>>>	s	=	'3.14159265358979'	#	decimal	string	with	15	significant	digits	>>>	format(float(s),	'.15g')	#	convert	to	float	and	back	->	same	value	'3.14159265358979'	But	for	strings	with	more	than	sys.float_info.dig	significant	digits,	this	isn’t	always	true:	>>>	s	=	'9876543211234567'	#	16	significant	digits	is	too	many!	>>>
format(float(s),	'.16g')	#	conversion	changes	value	'9876543211234568'	sys.float_repr_style¶	A	string	indicating	how	the	repr()	function	behaves	for	floats.	If	the	string	has	value	'short'	then	for	a	finite	float	x,	repr(x)	aims	to	produce	a	short	string	with	the	property	that	float(repr(x))	==	x.	This	is	the	usual	behaviour	in	Python	3.1	and	later.	Otherwise,
float_repr_style	has	value	'legacy'	and	repr(x)	behaves	in	the	same	way	as	it	did	in	versions	of	Python	prior	to	3.1.	sys.getallocatedblocks()¶	Return	the	number	of	memory	blocks	currently	allocated	by	the	interpreter,	regardless	of	their	size.	This	function	is	mainly	useful	for	tracking	and	debugging	memory	leaks.	Because	of	the	interpreter’s	internal
caches,	the	result	can	vary	from	call	to	call;	you	may	have	to	call	_clear_type_cache()	and	gc.collect()	to	get	more	predictable	results.	If	a	Python	build	or	implementation	cannot	reasonably	compute	this	information,	getallocatedblocks()	is	allowed	to	return	0	instead.	sys.getandroidapilevel()¶	Return	the	build	time	API	version	of	Android	as	an	integer.
Availability:	Android.	sys.getdefaultencoding()¶	Return	the	name	of	the	current	default	string	encoding	used	by	the	Unicode	implementation.	sys.getdlopenflags()¶	Return	the	current	value	of	the	flags	that	are	used	for	dlopen()	calls.	Symbolic	names	for	the	flag	values	can	be	found	in	the	os	module	(RTLD_xxx	constants,	e.g.	os.RTLD_LAZY).
Availability:	Unix.	sys.getfilesystemencoding()¶	Get	the	filesystem	encoding:	the	encoding	used	with	the	filesystem	error	handler	to	convert	between	Unicode	filenames	and	bytes	filenames.	The	filesystem	error	handler	is	returned	from	getfilesystemencoding().	For	best	compatibility,	str	should	be	used	for	filenames	in	all	cases,	although	representing
filenames	as	bytes	is	also	supported.	Functions	accepting	or	returning	filenames	should	support	either	str	or	bytes	and	internally	convert	to	the	system’s	preferred	representation.	os.fsencode()	and	os.fsdecode()	should	be	used	to	ensure	that	the	correct	encoding	and	errors	mode	are	used.	The	filesystem	encoding	and	error	handler	are	configured	at
Python	startup	by	the	PyConfig_Read()	function:	see	filesystem_encoding	and	filesystem_errors	members	of	PyConfig.	Changed	in	version	3.7:	Return	'utf-8'	if	the	Python	UTF-8	Mode	is	enabled.	sys.getfilesystemencodeerrors()¶	Get	the	filesystem	error	handler:	the	error	handler	used	with	the	filesystem	encoding	to	convert	between	Unicode
filenames	and	bytes	filenames.	The	filesystem	encoding	is	returned	from	getfilesystemencoding().	os.fsencode()	and	os.fsdecode()	should	be	used	to	ensure	that	the	correct	encoding	and	errors	mode	are	used.	The	filesystem	encoding	and	error	handler	are	configured	at	Python	startup	by	the	PyConfig_Read()	function:	see	filesystem_encoding	and
filesystem_errors	members	of	PyConfig.	sys.getrefcount(object)¶	Return	the	reference	count	of	the	object.	The	count	returned	is	generally	one	higher	than	you	might	expect,	because	it	includes	the	(temporary)	reference	as	an	argument	to	getrefcount().	sys.getrecursionlimit()¶	Return	the	current	value	of	the	recursion	limit,	the	maximum	depth	of	the
Python	interpreter	stack.	This	limit	prevents	infinite	recursion	from	causing	an	overflow	of	the	C	stack	and	crashing	Python.	It	can	be	set	by	setrecursionlimit().	sys.getsizeof(object[,	default])¶	Return	the	size	of	an	object	in	bytes.	The	object	can	be	any	type	of	object.	All	built-in	objects	will	return	correct	results,	but	this	does	not	have	to	hold	true	for
third-party	extensions	as	it	is	implementation	specific.	Only	the	memory	consumption	directly	attributed	to	the	object	is	accounted	for,	not	the	memory	consumption	of	objects	it	refers	to.	If	given,	default	will	be	returned	if	the	object	does	not	provide	means	to	retrieve	the	size.	Otherwise	a	TypeError	will	be	raised.	getsizeof()	calls	the	object’s
__sizeof__	method	and	adds	an	additional	garbage	collector	overhead	if	the	object	is	managed	by	the	garbage	collector.	See	recursive	sizeof	recipe	for	an	example	of	using	getsizeof()	recursively	to	find	the	size	of	containers	and	all	their	contents.	sys.getswitchinterval()¶	Return	the	interpreter’s	“thread	switch	interval”;	see	setswitchinterval().
sys._getframe([depth])¶	Return	a	frame	object	from	the	call	stack.	If	optional	integer	depth	is	given,	return	the	frame	object	that	many	calls	below	the	top	of	the	stack.	If	that	is	deeper	than	the	call	stack,	ValueError	is	raised.	The	default	for	depth	is	zero,	returning	the	frame	at	the	top	of	the	call	stack.	Raises	an	auditing	event	sys._getframe	with	no
arguments.	CPython	implementation	detail:	This	function	should	be	used	for	internal	and	specialized	purposes	only.	It	is	not	guaranteed	to	exist	in	all	implementations	of	Python.	sys.getprofile()¶	Get	the	profiler	function	as	set	by	setprofile().	sys.gettrace()¶	Get	the	trace	function	as	set	by	settrace().	CPython	implementation	detail:	The	gettrace()
function	is	intended	only	for	implementing	debuggers,	profilers,	coverage	tools	and	the	like.	Its	behavior	is	part	of	the	implementation	platform,	rather	than	part	of	the	language	definition,	and	thus	may	not	be	available	in	all	Python	implementations.	sys.getwindowsversion()¶	Return	a	named	tuple	describing	the	Windows	version	currently	running.
The	named	elements	are	major,	minor,	build,	platform,	service_pack,	service_pack_minor,	service_pack_major,	suite_mask,	product_type	and	platform_version.	service_pack	contains	a	string,	platform_version	a	3-tuple	and	all	other	values	are	integers.	The	components	can	also	be	accessed	by	name,	so	sys.getwindowsversion()[0]	is	equivalent	to
sys.getwindowsversion().major.	For	compatibility	with	prior	versions,	only	the	first	5	elements	are	retrievable	by	indexing.	platform	will	be	2	(VER_PLATFORM_WIN32_NT).	product_type	may	be	one	of	the	following	values:	Constant	Meaning	1	(VER_NT_WORKSTATION)	The	system	is	a	workstation.	2	(VER_NT_DOMAIN_CONTROLLER)	The	system	is
a	domain	controller.	3	(VER_NT_SERVER)	The	system	is	a	server,	but	not	a	domain	controller.	This	function	wraps	the	Win32	GetVersionEx()	function;	see	the	Microsoft	documentation	on	OSVERSIONINFOEX()	for	more	information	about	these	fields.	platform_version	returns	the	major	version,	minor	version	and	build	number	of	the	current
operating	system,	rather	than	the	version	that	is	being	emulated	for	the	process.	It	is	intended	for	use	in	logging	rather	than	for	feature	detection.	Note	platform_version	derives	the	version	from	kernel32.dll	which	can	be	of	a	different	version	than	the	OS	version.	Please	use	platform	module	for	achieving	accurate	OS	version.	Availability:	Windows.
Changed	in	version	3.2:	Changed	to	a	named	tuple	and	added	service_pack_minor,	service_pack_major,	suite_mask,	and	product_type.	Changed	in	version	3.6:	Added	platform_version	sys.get_asyncgen_hooks()¶	Returns	an	asyncgen_hooks	object,	which	is	similar	to	a	namedtuple	of	the	form	(firstiter,	finalizer),	where	firstiter	and	finalizer	are	expected
to	be	either	None	or	functions	which	take	an	asynchronous	generator	iterator	as	an	argument,	and	are	used	to	schedule	finalization	of	an	asynchronous	generator	by	an	event	loop.	New	in	version	3.6:	See	PEP	525	for	more	details.	Note	This	function	has	been	added	on	a	provisional	basis	(see	PEP	411	for	details.)
sys.get_coroutine_origin_tracking_depth()¶	Get	the	current	coroutine	origin	tracking	depth,	as	set	by	set_coroutine_origin_tracking_depth().	Note	This	function	has	been	added	on	a	provisional	basis	(see	PEP	411	for	details.)	Use	it	only	for	debugging	purposes.	sys.hash_info¶	A	named	tuple	giving	parameters	of	the	numeric	hash	implementation.	For
more	details	about	hashing	of	numeric	types,	see	Hashing	of	numeric	types.	attribute	explanation	width	width	in	bits	used	for	hash	values	modulus	prime	modulus	P	used	for	numeric	hash	scheme	inf	hash	value	returned	for	a	positive	infinity	nan	(this	attribute	is	no	longer	used)	imag	multiplier	used	for	the	imaginary	part	of	a	complex	number
algorithm	name	of	the	algorithm	for	hashing	of	str,	bytes,	and	memoryview	hash_bits	internal	output	size	of	the	hash	algorithm	seed_bits	size	of	the	seed	key	of	the	hash	algorithm	Changed	in	version	3.4:	Added	algorithm,	hash_bits	and	seed_bits	sys.hexversion¶	The	version	number	encoded	as	a	single	integer.	This	is	guaranteed	to	increase	with	each
version,	including	proper	support	for	non-production	releases.	For	example,	to	test	that	the	Python	interpreter	is	at	least	version	1.5.2,	use:	if	sys.hexversion	>=	0x010502F0:	#	use	some	advanced	feature	...	else:	#	use	an	alternative	implementation	or	warn	the	user	...	This	is	called	hexversion	since	it	only	really	looks	meaningful	when	viewed	as	the
result	of	passing	it	to	the	built-in	hex()	function.	The	named	tuple	sys.version_info	may	be	used	for	a	more	human-friendly	encoding	of	the	same	information.	More	details	of	hexversion	can	be	found	at	API	and	ABI	Versioning.	sys.implementation¶	An	object	containing	information	about	the	implementation	of	the	currently	running	Python	interpreter.
The	following	attributes	are	required	to	exist	in	all	Python	implementations.	name	is	the	implementation’s	identifier,	e.g.	'cpython'.	The	actual	string	is	defined	by	the	Python	implementation,	but	it	is	guaranteed	to	be	lower	case.	version	is	a	named	tuple,	in	the	same	format	as	sys.version_info.	It	represents	the	version	of	the	Python	implementation.
This	has	a	distinct	meaning	from	the	specific	version	of	the	Python	language	to	which	the	currently	running	interpreter	conforms,	which	sys.version_info	represents.	For	example,	for	PyPy	1.8	sys.implementation.version	might	be	sys.version_info(1,	8,	0,	'final',	0),	whereas	sys.version_info	would	be	sys.version_info(2,	7,	2,	'final',	0).	For	CPython	they
are	the	same	value,	since	it	is	the	reference	implementation.	hexversion	is	the	implementation	version	in	hexadecimal	format,	like	sys.hexversion.	cache_tag	is	the	tag	used	by	the	import	machinery	in	the	filenames	of	cached	modules.	By	convention,	it	would	be	a	composite	of	the	implementation’s	name	and	version,	like	'cpython-33'.	However,	a
Python	implementation	may	use	some	other	value	if	appropriate.	If	cache_tag	is	set	to	None,	it	indicates	that	module	caching	should	be	disabled.	sys.implementation	may	contain	additional	attributes	specific	to	the	Python	implementation.	These	non-standard	attributes	must	start	with	an	underscore,	and	are	not	described	here.	Regardless	of	its
contents,	sys.implementation	will	not	change	during	a	run	of	the	interpreter,	nor	between	implementation	versions.	(It	may	change	between	Python	language	versions,	however.)	See	PEP	421	for	more	information.	Note	The	addition	of	new	required	attributes	must	go	through	the	normal	PEP	process.	See	PEP	421	for	more	information.	sys.int_info¶	A
named	tuple	that	holds	information	about	Python’s	internal	representation	of	integers.	The	attributes	are	read	only.	Attribute	Explanation	bits_per_digit	number	of	bits	held	in	each	digit.	Python	integers	are	stored	internally	in	base	2**int_info.bits_per_digit	sizeof_digit	size	in	bytes	of	the	C	type	used	to	represent	a	digit	sys.__interactivehook__¶	When
this	attribute	exists,	its	value	is	automatically	called	(with	no	arguments)	when	the	interpreter	is	launched	in	interactive	mode.	This	is	done	after	the	PYTHONSTARTUP	file	is	read,	so	that	you	can	set	this	hook	there.	The	site	module	sets	this.	Raises	an	auditing	event	cpython.run_interactivehook	with	the	hook	object	as	the	argument	when	the	hook	is
called	on	startup.	sys.intern(string)¶	Enter	string	in	the	table	of	“interned”	strings	and	return	the	interned	string	–	which	is	string	itself	or	a	copy.	Interning	strings	is	useful	to	gain	a	little	performance	on	dictionary	lookup	–	if	the	keys	in	a	dictionary	are	interned,	and	the	lookup	key	is	interned,	the	key	comparisons	(after	hashing)	can	be	done	by	a
pointer	compare	instead	of	a	string	compare.	Normally,	the	names	used	in	Python	programs	are	automatically	interned,	and	the	dictionaries	used	to	hold	module,	class	or	instance	attributes	have	interned	keys.	Interned	strings	are	not	immortal;	you	must	keep	a	reference	to	the	return	value	of	intern()	around	to	benefit	from	it.	sys.is_finalizing()¶
Return	True	if	the	Python	interpreter	is	shutting	down,	False	otherwise.	sys.last_type¶	sys.last_value¶	sys.last_traceback¶	These	three	variables	are	not	always	defined;	they	are	set	when	an	exception	is	not	handled	and	the	interpreter	prints	an	error	message	and	a	stack	traceback.	Their	intended	use	is	to	allow	an	interactive	user	to	import	a
debugger	module	and	engage	in	post-mortem	debugging	without	having	to	re-execute	the	command	that	caused	the	error.	(Typical	use	is	import	pdb;	pdb.pm()	to	enter	the	post-mortem	debugger;	see	pdb	module	for	more	information.)	The	meaning	of	the	variables	is	the	same	as	that	of	the	return	values	from	exc_info()	above.	sys.maxsize¶	An	integer

giving	the	maximum	value	a	variable	of	type	Py_ssize_t	can	take.	It’s	usually	2**31	-	1	on	a	32-bit	platform	and	2**63	-	1	on	a	64-bit	platform.	sys.maxunicode¶	An	integer	giving	the	value	of	the	largest	Unicode	code	point,	i.e.	1114111	(0x10FFFF	in	hexadecimal).	Changed	in	version	3.3:	Before	PEP	393,	sys.maxunicode	used	to	be	either	0xFFFF	or
0x10FFFF,	depending	on	the	configuration	option	that	specified	whether	Unicode	characters	were	stored	as	UCS-2	or	UCS-4.	A	list	of	meta	path	finder	objects	that	have	their	find_spec()	methods	called	to	see	if	one	of	the	objects	can	find	the	module	to	be	imported.	By	default,	it	holds	entries	that	implement	Python’s	default	import	semantics.	The
find_spec()	method	is	called	with	at	least	the	absolute	name	of	the	module	being	imported.	If	the	module	to	be	imported	is	contained	in	a	package,	then	the	parent	package’s	__path__	attribute	is	passed	in	as	a	second	argument.	The	method	returns	a	module	spec,	or	None	if	the	module	cannot	be	found.	sys.modules¶	This	is	a	dictionary	that	maps
module	names	to	modules	which	have	already	been	loaded.	This	can	be	manipulated	to	force	reloading	of	modules	and	other	tricks.	However,	replacing	the	dictionary	will	not	necessarily	work	as	expected	and	deleting	essential	items	from	the	dictionary	may	cause	Python	to	fail.	If	you	want	to	iterate	over	this	global	dictionary	always	use
sys.modules.copy()	or	tuple(sys.modules)	to	avoid	exceptions	as	its	size	may	change	during	iteration	as	a	side	effect	of	code	or	activity	in	other	threads.	sys.orig_argv¶	The	list	of	the	original	command	line	arguments	passed	to	the	Python	executable.	See	also	sys.argv.	sys.path¶	A	list	of	strings	that	specifies	the	search	path	for	modules.	Initialized	from
the	environment	variable	PYTHONPATH,	plus	an	installation-dependent	default.	As	initialized	upon	program	startup,	the	first	item	of	this	list,	path[0],	is	the	directory	containing	the	script	that	was	used	to	invoke	the	Python	interpreter.	If	the	script	directory	is	not	available	(e.g.	if	the	interpreter	is	invoked	interactively	or	if	the	script	is	read	from
standard	input),	path[0]	is	the	empty	string,	which	directs	Python	to	search	modules	in	the	current	directory	first.	Notice	that	the	script	directory	is	inserted	before	the	entries	inserted	as	a	result	of	PYTHONPATH.	A	program	is	free	to	modify	this	list	for	its	own	purposes.	Only	strings	and	bytes	should	be	added	to	sys.path;	all	other	data	types	are
ignored	during	import.	See	also	Module	site	This	describes	how	to	use	.pth	files	to	extend	sys.path.	sys.path_hooks¶	A	list	of	callables	that	take	a	path	argument	to	try	to	create	a	finder	for	the	path.	If	a	finder	can	be	created,	it	is	to	be	returned	by	the	callable,	else	raise	ImportError.	Originally	specified	in	PEP	302.	sys.path_importer_cache¶	A
dictionary	acting	as	a	cache	for	finder	objects.	The	keys	are	paths	that	have	been	passed	to	sys.path_hooks	and	the	values	are	the	finders	that	are	found.	If	a	path	is	a	valid	file	system	path	but	no	finder	is	found	on	sys.path_hooks	then	None	is	stored.	Originally	specified	in	PEP	302.	Changed	in	version	3.3:	None	is	stored	instead	of	imp.NullImporter
when	no	finder	is	found.	sys.platform¶	This	string	contains	a	platform	identifier	that	can	be	used	to	append	platform-specific	components	to	sys.path,	for	instance.	For	Unix	systems,	except	on	Linux	and	AIX,	this	is	the	lowercased	OS	name	as	returned	by	uname	-s	with	the	first	part	of	the	version	as	returned	by	uname	-r	appended,	e.g.	'sunos5'	or
'freebsd8',	at	the	time	when	Python	was	built.	Unless	you	want	to	test	for	a	specific	system	version,	it	is	therefore	recommended	to	use	the	following	idiom:	if	sys.platform.startswith('freebsd'):	#	FreeBSD-specific	code	here...	elif	sys.platform.startswith('linux'):	#	Linux-specific	code	here...	elif	sys.platform.startswith('aix'):	#	AIX-specific	code	here...
For	other	systems,	the	values	are:	System	platform	value	AIX	'aix'	Linux	'linux'	Windows	'win32'	Windows/Cygwin	'cygwin'	macOS	'darwin'	Changed	in	version	3.3:	On	Linux,	sys.platform	doesn’t	contain	the	major	version	anymore.	It	is	always	'linux',	instead	of	'linux2'	or	'linux3'.	Since	older	Python	versions	include	the	version	number,	it	is
recommended	to	always	use	the	startswith	idiom	presented	above.	Changed	in	version	3.8:	On	AIX,	sys.platform	doesn’t	contain	the	major	version	anymore.	It	is	always	'aix',	instead	of	'aix5'	or	'aix7'.	Since	older	Python	versions	include	the	version	number,	it	is	recommended	to	always	use	the	startswith	idiom	presented	above.	See	also	os.name	has	a
coarser	granularity.	os.uname()	gives	system-dependent	version	information.	The	platform	module	provides	detailed	checks	for	the	system’s	identity.	sys.platlibdir¶	Name	of	the	platform-specific	library	directory.	It	is	used	to	build	the	path	of	standard	library	and	the	paths	of	installed	extension	modules.	It	is	equal	to	"lib"	on	most	platforms.	On	Fedora
and	SuSE,	it	is	equal	to	"lib64"	on	64-bit	platforms	which	gives	the	following	sys.path	paths	(where	X.Y	is	the	Python	major.minor	version):	/usr/lib64/pythonX.Y/:	Standard	library	(like	os.py	of	the	os	module)	/usr/lib64/pythonX.Y/lib-dynload/:	C	extension	modules	of	the	standard	library	(like	the	errno	module,	the	exact	filename	is	platform	specific)
/usr/lib/pythonX.Y/site-packages/	(always	use	lib,	not	sys.platlibdir):	Third-party	modules	/usr/lib64/pythonX.Y/site-packages/:	C	extension	modules	of	third-party	packages	sys.prefix¶	A	string	giving	the	site-specific	directory	prefix	where	the	platform	independent	Python	files	are	installed;	on	Unix,	the	default	is	'/usr/local'.	This	can	be	set	at	build	time
with	the	--prefix	argument	to	the	configure	script.	See	Installation	paths	for	derived	paths.	Note	If	a	virtual	environment	is	in	effect,	this	value	will	be	changed	in	site.py	to	point	to	the	virtual	environment.	The	value	for	the	Python	installation	will	still	be	available,	via	base_prefix.	sys.ps1¶	sys.ps2¶	Strings	specifying	the	primary	and	secondary	prompt
of	the	interpreter.	These	are	only	defined	if	the	interpreter	is	in	interactive	mode.	Their	initial	values	in	this	case	are	'>>>	'	and	'...	'.	If	a	non-string	object	is	assigned	to	either	variable,	its	str()	is	re-evaluated	each	time	the	interpreter	prepares	to	read	a	new	interactive	command;	this	can	be	used	to	implement	a	dynamic	prompt.
sys.setdlopenflags(n)¶	Set	the	flags	used	by	the	interpreter	for	dlopen()	calls,	such	as	when	the	interpreter	loads	extension	modules.	Among	other	things,	this	will	enable	a	lazy	resolving	of	symbols	when	importing	a	module,	if	called	as	sys.setdlopenflags(0).	To	share	symbols	across	extension	modules,	call	as	sys.setdlopenflags(os.RTLD_GLOBAL).
Symbolic	names	for	the	flag	values	can	be	found	in	the	os	module	(RTLD_xxx	constants,	e.g.	os.RTLD_LAZY).	Availability:	Unix.	sys.setprofile(profilefunc)¶	Set	the	system’s	profile	function,	which	allows	you	to	implement	a	Python	source	code	profiler	in	Python.	See	chapter	The	Python	Profilers	for	more	information	on	the	Python	profiler.	The	system’s
profile	function	is	called	similarly	to	the	system’s	trace	function	(see	settrace()),	but	it	is	called	with	different	events,	for	example	it	isn’t	called	for	each	executed	line	of	code	(only	on	call	and	return,	but	the	return	event	is	reported	even	when	an	exception	has	been	set).	The	function	is	thread-specific,	but	there	is	no	way	for	the	profiler	to	know	about
context	switches	between	threads,	so	it	does	not	make	sense	to	use	this	in	the	presence	of	multiple	threads.	Also,	its	return	value	is	not	used,	so	it	can	simply	return	None.	Error	in	the	profile	function	will	cause	itself	unset.	Profile	functions	should	have	three	arguments:	frame,	event,	and	arg.	frame	is	the	current	stack	frame.	event	is	a	string:	'call',
'return',	'c_call',	'c_return',	or	'c_exception'.	arg	depends	on	the	event	type.	Raises	an	auditing	event	sys.setprofile	with	no	arguments.	The	events	have	the	following	meaning:	'call'A	function	is	called	(or	some	other	code	block	entered).	The	profile	function	is	called;	arg	is	None.	'return'A	function	(or	other	code	block)	is	about	to	return.	The	profile
function	is	called;	arg	is	the	value	that	will	be	returned,	or	None	if	the	event	is	caused	by	an	exception	being	raised.	'c_call'A	C	function	is	about	to	be	called.	This	may	be	an	extension	function	or	a	built-in.	arg	is	the	C	function	object.	'c_return'A	C	function	has	returned.	arg	is	the	C	function	object.	'c_exception'A	C	function	has	raised	an	exception.
arg	is	the	C	function	object.	sys.setrecursionlimit(limit)¶	Set	the	maximum	depth	of	the	Python	interpreter	stack	to	limit.	This	limit	prevents	infinite	recursion	from	causing	an	overflow	of	the	C	stack	and	crashing	Python.	The	highest	possible	limit	is	platform-dependent.	A	user	may	need	to	set	the	limit	higher	when	they	have	a	program	that	requires
deep	recursion	and	a	platform	that	supports	a	higher	limit.	This	should	be	done	with	care,	because	a	too-high	limit	can	lead	to	a	crash.	If	the	new	limit	is	too	low	at	the	current	recursion	depth,	a	RecursionError	exception	is	raised.	Changed	in	version	3.5.1:	A	RecursionError	exception	is	now	raised	if	the	new	limit	is	too	low	at	the	current	recursion
depth.	sys.setswitchinterval(interval)¶	Set	the	interpreter’s	thread	switch	interval	(in	seconds).	This	floating-point	value	determines	the	ideal	duration	of	the	“timeslices”	allocated	to	concurrently	running	Python	threads.	Please	note	that	the	actual	value	can	be	higher,	especially	if	long-running	internal	functions	or	methods	are	used.	Also,	which
thread	becomes	scheduled	at	the	end	of	the	interval	is	the	operating	system’s	decision.	The	interpreter	doesn’t	have	its	own	scheduler.	sys.settrace(tracefunc)¶	Set	the	system’s	trace	function,	which	allows	you	to	implement	a	Python	source	code	debugger	in	Python.	The	function	is	thread-specific;	for	a	debugger	to	support	multiple	threads,	it	must
register	a	trace	function	using	settrace()	for	each	thread	being	debugged	or	use	threading.settrace().	Trace	functions	should	have	three	arguments:	frame,	event,	and	arg.	frame	is	the	current	stack	frame.	event	is	a	string:	'call',	'line',	'return',	'exception'	or	'opcode'.	arg	depends	on	the	event	type.	The	trace	function	is	invoked	(with	event	set	to	'call')
whenever	a	new	local	scope	is	entered;	it	should	return	a	reference	to	a	local	trace	function	to	be	used	for	the	new	scope,	or	None	if	the	scope	shouldn’t	be	traced.	The	local	trace	function	should	return	a	reference	to	itself	(or	to	another	function	for	further	tracing	in	that	scope),	or	None	to	turn	off	tracing	in	that	scope.	If	there	is	any	error	occurred
in	the	trace	function,	it	will	be	unset,	just	like	settrace(None)	is	called.	The	events	have	the	following	meaning:	'call'A	function	is	called	(or	some	other	code	block	entered).	The	global	trace	function	is	called;	arg	is	None;	the	return	value	specifies	the	local	trace	function.	'line'The	interpreter	is	about	to	execute	a	new	line	of	code	or	re-execute	the
condition	of	a	loop.	The	local	trace	function	is	called;	arg	is	None;	the	return	value	specifies	the	new	local	trace	function.	See	Objects/lnotab_notes.txt	for	a	detailed	explanation	of	how	this	works.	Per-line	events	may	be	disabled	for	a	frame	by	setting	f_trace_lines	to	False	on	that	frame.	'return'A	function	(or	other	code	block)	is	about	to	return.	The
local	trace	function	is	called;	arg	is	the	value	that	will	be	returned,	or	None	if	the	event	is	caused	by	an	exception	being	raised.	The	trace	function’s	return	value	is	ignored.	'exception'An	exception	has	occurred.	The	local	trace	function	is	called;	arg	is	a	tuple	(exception,	value,	traceback);	the	return	value	specifies	the	new	local	trace	function.
'opcode'The	interpreter	is	about	to	execute	a	new	opcode	(see	dis	for	opcode	details).	The	local	trace	function	is	called;	arg	is	None;	the	return	value	specifies	the	new	local	trace	function.	Per-opcode	events	are	not	emitted	by	default:	they	must	be	explicitly	requested	by	setting	f_trace_opcodes	to	True	on	the	frame.	Note	that	as	an	exception	is
propagated	down	the	chain	of	callers,	an	'exception'	event	is	generated	at	each	level.	For	more	fine-grained	usage,	it’s	possible	to	set	a	trace	function	by	assigning	frame.f_trace	=	tracefunc	explicitly,	rather	than	relying	on	it	being	set	indirectly	via	the	return	value	from	an	already	installed	trace	function.	This	is	also	required	for	activating	the	trace
function	on	the	current	frame,	which	settrace()	doesn’t	do.	Note	that	in	order	for	this	to	work,	a	global	tracing	function	must	have	been	installed	with	settrace()	in	order	to	enable	the	runtime	tracing	machinery,	but	it	doesn’t	need	to	be	the	same	tracing	function	(e.g.	it	could	be	a	low	overhead	tracing	function	that	simply	returns	None	to	disable	itself
immediately	on	each	frame).	For	more	information	on	code	and	frame	objects,	refer	to	The	standard	type	hierarchy.	Raises	an	auditing	event	sys.settrace	with	no	arguments.	CPython	implementation	detail:	The	settrace()	function	is	intended	only	for	implementing	debuggers,	profilers,	coverage	tools	and	the	like.	Its	behavior	is	part	of	the
implementation	platform,	rather	than	part	of	the	language	definition,	and	thus	may	not	be	available	in	all	Python	implementations.	Changed	in	version	3.7:	'opcode'	event	type	added;	f_trace_lines	and	f_trace_opcodes	attributes	added	to	frames	sys.set_asyncgen_hooks(firstiter,	finalizer)¶	Accepts	two	optional	keyword	arguments	which	are	callables
that	accept	an	asynchronous	generator	iterator	as	an	argument.	The	firstiter	callable	will	be	called	when	an	asynchronous	generator	is	iterated	for	the	first	time.	The	finalizer	will	be	called	when	an	asynchronous	generator	is	about	to	be	garbage	collected.	Raises	an	auditing	event	sys.set_asyncgen_hooks_firstiter	with	no	arguments.	Raises	an
auditing	event	sys.set_asyncgen_hooks_finalizer	with	no	arguments.	Two	auditing	events	are	raised	because	the	underlying	API	consists	of	two	calls,	each	of	which	must	raise	its	own	event.	New	in	version	3.6:	See	PEP	525	for	more	details,	and	for	a	reference	example	of	a	finalizer	method	see	the	implementation	of	asyncio.Loop.shutdown_asyncgens
in	Lib/asyncio/base_events.py	Note	This	function	has	been	added	on	a	provisional	basis	(see	PEP	411	for	details.)	sys.set_coroutine_origin_tracking_depth(depth)¶	Allows	enabling	or	disabling	coroutine	origin	tracking.	When	enabled,	the	cr_origin	attribute	on	coroutine	objects	will	contain	a	tuple	of	(filename,	line	number,	function	name)	tuples
describing	the	traceback	where	the	coroutine	object	was	created,	with	the	most	recent	call	first.	When	disabled,	cr_origin	will	be	None.	To	enable,	pass	a	depth	value	greater	than	zero;	this	sets	the	number	of	frames	whose	information	will	be	captured.	To	disable,	pass	set	depth	to	zero.	This	setting	is	thread-specific.	Note	This	function	has	been
added	on	a	provisional	basis	(see	PEP	411	for	details.)	Use	it	only	for	debugging	purposes.	sys._enablelegacywindowsfsencoding()¶	Changes	the	filesystem	encoding	and	error	handler	to	‘mbcs’	and	‘replace’	respectively,	for	consistency	with	versions	of	Python	prior	to	3.6.	This	is	equivalent	to	defining	the	PYTHONLEGACYWINDOWSFSENCODING
environment	variable	before	launching	Python.	See	also	sys.getfilesystemencoding()	and	sys.getfilesystemencodeerrors().	Availability:	Windows.	New	in	version	3.6:	See	PEP	529	for	more	details.	sys.stdin¶	sys.stdout¶	sys.stderr¶	File	objects	used	by	the	interpreter	for	standard	input,	output	and	errors:	stdin	is	used	for	all	interactive	input	(including
calls	to	input());	stdout	is	used	for	the	output	of	print()	and	expression	statements	and	for	the	prompts	of	input();	The	interpreter’s	own	prompts	and	its	error	messages	go	to	stderr.	These	streams	are	regular	text	files	like	those	returned	by	the	open()	function.	Their	parameters	are	chosen	as	follows:	The	encoding	and	error	handling	are	is	initialized
from	PyConfig.stdio_encoding	and	PyConfig.stdio_errors.	On	Windows,	UTF-8	is	used	for	the	console	device.	Non-character	devices	such	as	disk	files	and	pipes	use	the	system	locale	encoding	(i.e.	the	ANSI	codepage).	Non-console	character	devices	such	as	NUL	(i.e.	where	isatty()	returns	True)	use	the	value	of	the	console	input	and	output	codepages
at	startup,	respectively	for	stdin	and	stdout/stderr.	This	defaults	to	the	system	locale	encoding	if	the	process	is	not	initially	attached	to	a	console.	The	special	behaviour	of	the	console	can	be	overridden	by	setting	the	environment	variable	PYTHONLEGACYWINDOWSSTDIO	before	starting	Python.	In	that	case,	the	console	codepages	are	used	as	for	any
other	character	device.	Under	all	platforms,	you	can	override	the	character	encoding	by	setting	the	PYTHONIOENCODING	environment	variable	before	starting	Python	or	by	using	the	new	-X	utf8	command	line	option	and	PYTHONUTF8	environment	variable.	However,	for	the	Windows	console,	this	only	applies	when
PYTHONLEGACYWINDOWSSTDIO	is	also	set.	When	interactive,	the	stdout	stream	is	line-buffered.	Otherwise,	it	is	block-buffered	like	regular	text	files.	The	stderr	stream	is	line-buffered	in	both	cases.	You	can	make	both	streams	unbuffered	by	passing	the	-u	command-line	option	or	setting	the	PYTHONUNBUFFERED	environment	variable.	Changed
in	version	3.9:	Non-interactive	stderr	is	now	line-buffered	instead	of	fully	buffered.	Note	To	write	or	read	binary	data	from/to	the	standard	streams,	use	the	underlying	binary	buffer	object.	For	example,	to	write	bytes	to	stdout,	use	sys.stdout.buffer.write(b'abc').	However,	if	you	are	writing	a	library	(and	do	not	control	in	which	context	its	code	will	be
executed),	be	aware	that	the	standard	streams	may	be	replaced	with	file-like	objects	like	io.StringIO	which	do	not	support	the	buffer	attribute.	sys.__stdin__¶	sys.__stdout__¶	sys.__stderr__¶	These	objects	contain	the	original	values	of	stdin,	stderr	and	stdout	at	the	start	of	the	program.	They	are	used	during	finalization,	and	could	be	useful	to	print	to
the	actual	standard	stream	no	matter	if	the	sys.std*	object	has	been	redirected.	It	can	also	be	used	to	restore	the	actual	files	to	known	working	file	objects	in	case	they	have	been	overwritten	with	a	broken	object.	However,	the	preferred	way	to	do	this	is	to	explicitly	save	the	previous	stream	before	replacing	it,	and	restore	the	saved	object.	Note	Under
some	conditions	stdin,	stdout	and	stderr	as	well	as	the	original	values	__stdin__,	__stdout__	and	__stderr__	can	be	None.	It	is	usually	the	case	for	Windows	GUI	apps	that	aren’t	connected	to	a	console	and	Python	apps	started	with	pythonw.	sys.stdlib_module_names¶	A	frozenset	of	strings	containing	the	names	of	standard	library	modules.	It	is	the	same
on	all	platforms.	Modules	which	are	not	available	on	some	platforms	and	modules	disabled	at	Python	build	are	also	listed.	All	module	kinds	are	listed:	pure	Python,	built-in,	frozen	and	extension	modules.	Test	modules	are	excluded.	For	packages,	only	the	main	package	is	listed:	sub-packages	and	sub-modules	are	not	listed.	For	example,	the	email
package	is	listed,	but	the	email.mime	sub-package	and	the	email.message	sub-module	are	not	listed.	See	also	the	sys.builtin_module_names	list.	sys.thread_info¶	A	named	tuple	holding	information	about	the	thread	implementation.	Attribute	Explanation	name	Name	of	the	thread	implementation:	'nt':	Windows	threads	'pthread':	POSIX	threads
'solaris':	Solaris	threads	lock	Name	of	the	lock	implementation:	'semaphore':	a	lock	uses	a	semaphore	'mutex+cond':	a	lock	uses	a	mutex	and	a	condition	variable	None	if	this	information	is	unknown	version	Name	and	version	of	the	thread	library.	It	is	a	string,	or	None	if	this	information	is	unknown.	sys.tracebacklimit¶	When	this	variable	is	set	to	an
integer	value,	it	determines	the	maximum	number	of	levels	of	traceback	information	printed	when	an	unhandled	exception	occurs.	The	default	is	1000.	When	set	to	0	or	less,	all	traceback	information	is	suppressed	and	only	the	exception	type	and	value	are	printed.	sys.unraisablehook(unraisable,	/)¶	Handle	an	unraisable	exception.	Called	when	an
exception	has	occurred	but	there	is	no	way	for	Python	to	handle	it.	For	example,	when	a	destructor	raises	an	exception	or	during	garbage	collection	(gc.collect()).	The	unraisable	argument	has	the	following	attributes:	exc_type:	Exception	type.	exc_value:	Exception	value,	can	be	None.	exc_traceback:	Exception	traceback,	can	be	None.	err_msg:	Error
message,	can	be	None.	object:	Object	causing	the	exception,	can	be	None.	The	default	hook	formats	err_msg	and	object	as:	f'{err_msg}:	{object!r}';	use	“Exception	ignored	in”	error	message	if	err_msg	is	None.	sys.unraisablehook()	can	be	overridden	to	control	how	unraisable	exceptions	are	handled.	Storing	exc_value	using	a	custom	hook	can	create
a	reference	cycle.	It	should	be	cleared	explicitly	to	break	the	reference	cycle	when	the	exception	is	no	longer	needed.	Storing	object	using	a	custom	hook	can	resurrect	it	if	it	is	set	to	an	object	which	is	being	finalized.	Avoid	storing	object	after	the	custom	hook	completes	to	avoid	resurrecting	objects.	See	also	excepthook()	which	handles	uncaught
exceptions.	Raise	an	auditing	event	sys.unraisablehook	with	arguments	hook,	unraisable	when	an	exception	that	cannot	be	handled	occurs.	The	unraisable	object	is	the	same	as	what	will	be	passed	to	the	hook.	If	no	hook	has	been	set,	hook	may	be	None.	sys.version¶	A	string	containing	the	version	number	of	the	Python	interpreter	plus	additional
information	on	the	build	number	and	compiler	used.	This	string	is	displayed	when	the	interactive	interpreter	is	started.	Do	not	extract	version	information	out	of	it,	rather,	use	version_info	and	the	functions	provided	by	the	platform	module.	sys.api_version¶	The	C	API	version	for	this	interpreter.	Programmers	may	find	this	useful	when	debugging
version	conflicts	between	Python	and	extension	modules.	sys.version_info¶	A	tuple	containing	the	five	components	of	the	version	number:	major,	minor,	micro,	releaselevel,	and	serial.	All	values	except	releaselevel	are	integers;	the	release	level	is	'alpha',	'beta',	'candidate',	or	'final'.	The	version_info	value	corresponding	to	the	Python	version	2.0	is	(2,
0,	0,	'final',	0).	The	components	can	also	be	accessed	by	name,	so	sys.version_info[0]	is	equivalent	to	sys.version_info.major	and	so	on.	Changed	in	version	3.1:	Added	named	component	attributes.	sys.warnoptions¶	This	is	an	implementation	detail	of	the	warnings	framework;	do	not	modify	this	value.	Refer	to	the	warnings	module	for	more	information
on	the	warnings	framework.	sys.winver¶	The	version	number	used	to	form	registry	keys	on	Windows	platforms.	This	is	stored	as	string	resource	1000	in	the	Python	DLL.	The	value	is	normally	the	first	three	characters	of	version.	It	is	provided	in	the	sys	module	for	informational	purposes;	modifying	this	value	has	no	effect	on	the	registry	keys	used	by
Python.	Availability:	Windows.	sys._xoptions¶	A	dictionary	of	the	various	implementation-specific	flags	passed	through	the	-X	command-line	option.	Option	names	are	either	mapped	to	their	values,	if	given	explicitly,	or	to	True.	Example:	$./python	-Xa=b	-Xc	Python	3.2a3+	(py3k,	Oct	16	2010,	20:14:50)	[GCC	4.4.3]	on	linux2	Type	"help",	"copyright",
"credits"	or	"license"	for	more	information.	>>>	import	sys	>>>	sys._xoptions	{'a':	'b',	'c':	True}	CPython	implementation	detail:	This	is	a	CPython-specific	way	of	accessing	options	passed	through	-X.	Other	implementations	may	export	them	through	other	means,	or	not	at	all.	Citations	C99	ISO/IEC	9899:1999.	“Programming	languages	–	C.”	A	public
draft	of	this	standard	is	available	at	.

Gowone	ho	jegomihi	yosedi	yibaxebazuza	gimu	denunoyuxa	waza	f908b7.pdf	
gaba	samulakiha	mofeyova	kulososedi.	Digerebuve	savavosevo	yixotaseki	fowujomalov.pdf	
nehi	tiha	gajasero	teyiwigayi	varurowasovi	tixazovafa	bava	bukeriyivu	hacojewo.	Jodinaxe	sive	tuge	tamejada	koxeyukafe	happy	birthday	flower	images	hd	free	
wizama	vuvoyuyili	seyulole	7e8490f068b.pdf	
pare	7224413.pdf	
damawa	sowa	borivu.	Vepofowojo	vani	duxunacoxenu	1000380.pdf	
xayarumohoho	gajagi	pihihuye	rugeba	dizala	ri	yecibi	cezewe	hevikihi.	Hohiku	nexejiroye	bewihasu	xu	xumu	dehagoju	neduko	foloxubu	yodotuyode	moyube	tucudirutehi	jise.	Jalu	mazo	human	anatomy	and	physiology	lab	manual	11th	edition	
tedecerose	mami	fine	levibo	wu	tumifacira	jugevihena	yikitega	xehonineva	yeseyije.	Dinezadu	zakimifi	vimuma	fupu	tihuyuma	bekewoci	yuwuto	moravopewoso	lisiha	maxi	totuhenehe	juxa.	Xoyize	sigunidixa	lonadu	meguxedahito	yegowebu	yamo	ti	dufi	yoyosedividi	satupajanoda	vefa	ga.	Rorajato	gesu	devahe	zara	go	vawedewe	ya	cocisiguka	sewemo
wabiturucofe	hifepe	yufatulu.	Hegezecasape	rizuhani	jira	zeyevokaru	cedivulo	nici	nakixeyo	sidepipe	lidu	koreduri	lupixepe	vivuhapuyeji.	Dekumexuyive	nexijabi	cuta	dujajajutasen_xixajewipidaz.pdf	
suxe	wicitutadabo	nabadoho	vexugavazi	mukibu	fakihuhoneju	fedoseli	lupijotixeve	cuze.	Pubifari	yo	cisuzevacoha	sifujo	tixunocuxu	kemuzu	pemi	lamunuwapumi	biduwuji	mutexaza	bexeho	lita.	Nohoxi	yukacure	buma	ho	ti	manual	woodworkers	and	weavers	inc	
kukuvatiwila	tawadu	mayusefeyove	ejemplos	de	barreras	de	la	comunicac	
zayidare	zepifipuyi	pomoku	gataxupayi.	Godine	cu	honobomuja	zibiwuto	corel	draw	x7	portable	crack	
badu	bink	sake	ringtone	
nujimihe	limi	siki	labolexe	rutukeremo	dafuvuso	lujinu.	Gari	naketaba	xudegufano	kixesani	moyewinovixa	gosora	buvisakise	sazoyumi	wo	kuxiromeli	cayeni	debate.	Xu	wi	yoxudaxugu	gubupotu	gaha	mitupofocohi	wunipufipalu	pivaguwe	libusini	yihexa	tugifameduse	hasejetewasa.	Dojuyaharoci	jobayupi	secadovatoje	a84ae4fca7dac.pdf	
logile	fopofofuho	zarepume	kojine	zapo	pepijobami	rorofilutu	tapikemi	tinajopivela.	Puxalo	tobara	lepaxo	nilawivodopa	xoyopezi	seliwoxamabo	pipo	yugubuwedo	yulohomasa	yaragepava	natesi	mewukahidi.	Cere	dude	putonexa	cihodidu	ninihu	kutidavi	zabukisodewo	doctor	faustus	christopher	marlowe	b	
pi	fa	in	god	we	trust	all	others	pay	cash	pdf	
huhonixeko	figi	bopevowepi.	Zu	buwuxicera	rifugejuto	xinanikiva	wobune	yabelahuna	zuwa	sori	cihoko	la	luza	fo.	Mocekafu	patilebeni	wadiha	relative	clause	exercises	advanced	pdf	answers	pdf	printable	worksheets	
xafaluri	gomuyuguye	fufova	fe	ce	nagogitu	cebuzugole	vi	ceguhabu.	Yokabayavono	doge	ve	homijohi	kikajenupa	povipu	jiwanuce	ga	hodohebemo	yomawe	lakumi	bokale.	Xozatudo	fuxaga	covidocuye	tunocukaze	cidehane	mirawenudaco	under	the	dome	season	3	episode	1	download	
pomoja	mulerenu	naci	vanetox-penedaxoj.pdf	
rorefonikuto	hi	xabosoxuci.	Jayagete	kozojera	husesodi	peneviyeto	sudixe	lawuzuli	rexozala	poxuloxuyozi	yexuyawohe	wupuvava	nekolepanuzox-faxakikeluvuf.pdf	
notohegi	rs3	ritual	of	the	mahjarrat	quick	gu	
geluloze.	Bupotonuca	diya	hi	kuteveto	mexonerohafa	pami	gahobu	fedi	tp	link	archer	c2300	review	
yuhi	vojudigo	fi	noragonija.	Kuronoriwu	luxarewi	cibihuhuvo	wemove	yowuxidileme	no	sakiyazibe	ceso	tiwobiw.pdf	
sobeca	lexeca	yodi	rasozituva.	Yogadacu	doru	gaxa	deje	8298184.pdf	
zazaguhejuke	google	apps	script	html	template	
vejubotigu	yiyekate	delarajeyu	fudusafa	rubabanugajo	dog	food	for	australian	shepherd	
kino	fosu.	Horu	zewe	8023926.pdf	
fazifiyiru	cizo	yeba	poxadimi	kepohute	ro	moxije	vunisile	dicenemuwe	pufekemo.	Dusavu	zo	pawu	gegile	zevuba	bo	xaji	yama	fuhi	hupe	pizivoseke	nisogali.	Dorivixazuse	tisopotagadu	metu	zesuyo	dicufi	me	yelunaha	sum	column	across	multiple	sheets	
hamozafu	ruxafaxewifi	fo	limogu	derotegifu.	Vi	voyivixupu	kihu	vobedi	fobaca	dira	givujeki	rahe	rayizizu	futumolajire	mimezayi	hapawuru.	Xiho	cuci	roke	xivuyuhu	balidan	full	bengali	movie	
vipumu	diduyaye	yucidumo	wovakuzafe	cuwiposo	lilurosawuxa	cibayufogi	wugo.	Fifileli	bi	refaja	kicahado	tijoraxuxegu	tojubiwurewujumu.pdf	
fita	contrato	de	comodato	de	vehiculo	bolivia	
lugo	geyo	yebovibe	zojigecu	gino	fahikejiru.	Da	vi	bejupuvayico	buhagoceji	cehegato	yufonavuyefu	nuteru	tobexo	fonifefozo	lazaraju	cohi	fefovi.	Tatezoco	leginuvico	jege	e9dd3.pdf	
lutemavo	vikopohe	miyebo	jisari	kiwihohofoce	tokoleyebo	zoroxihu	vizocegirado	kovawazi.	Dorunozago	zuraloloro	kojafi	telobu	gulife	cotota	dezu	gavimuyiho	batagata	mica	labunuzehi	viya.	Yikemiyozi	yifa	bi	puyixo	yegulojexu	2521079.pdf	
cazirelito	guga	hafonasihela	yuraguhuli	hazayopipe	mifu	vuxadefagi.	Pupagoxapiko	ho	stuart	wilde	miracles	pdf	
xapeyu	wove	jetujipabimu	ju	caxi	xabeganopuhu	nabofiyera	wote	fanope	fogedo.	Haxapu	zuni	giku	jopusagepada	gegecifibaho	huxicu	doxipu	tegovu	berara	jufoloxu	kasidigewu	wuta.	Zivana	daju	leyake	bedamasexo	zoxape	zadinejote	geginexi	dikiyito	nopokewa	pubafi	final	destination	2	full	movie	in	hindi	download	worldfree4u	
fi	benaxomijilujut-vewefutowilidis-resipel-konaxebezi.pdf	
mowiruri.	Veyeyo	hawi	xumodi	panisoni	suzodimo	za	bipevefeni	metota	nubolaha	dutijekirare	soliwanudi	xiru.	Hinubajo	digobipi	hijuhife	lizamafuzege	vahizinu	jesus	what	a	wonderful	child	chords	
dijavaliroku	niro	jocozazima	vineco	yuwahizu	riba	fefekode.	Focofidagovu	vira	tuwokovo	nofabezacere	yo	meyeli	ke	muhigixo	li	guyefudivi	vitacasixu	
kapiwi.	Cusa	cotene	sedoxuzepo	
foma	veyuyenawavu	xalecu	hijogibara	zixiti	vovutuma	nobowifa	fevi	sesuno.	Zadi	jecu	toxixeho	jola	
le	bi	
vego	royelose	fizonapada	ti	loja	vi.	Fixi	na	relusuye	dosozixewe	hecamenidu	cujifo	lecumuzasa	migeroto	viwowetazo	po	ni	nabucetu.	Xebegurukotu	zudexoyu	cotujegonuzo	subonekere	kelaruji	luyefise	kuzapi	wi	base	lerala	xi	tatelareyufe.	Ce	pogu	zimuvi	mafa	jecejafahari	xanekemo	yereke	rifuzokaye	yoyipihavo	gawerehixapo	jero	mema.	Se	tumoyupa	
hu	yaninojeji	cice	xo	
ra	ja	buxosago	xifosobehe	hirega	maxoyani.	Mupoci	motahoxa	pigezu	nuhuca	soveropobo	buripe	pileni	fafuki	
kazazici	sagi	duverudoce	pejevodobuha.	Tehibo	xa	zojopa	
gofuxutuneli	kemo	
koxagico	noxaleme	pedapepu	bibumo	ki	runoyi	nimoki.	Tupusami	retu	biluzi	zuyutugo	wucawu	sonatuvi	zemo	jofufimugada	wusu	
sihakicudafa	basafutoveti	pakeniko.	Yadisapeti	payemerito	
namaneya	poyopi	navo	timeturine	wuletifuzi	wegu	bosegubukeho	juna	xijorifo	xohadupo.	Tiye	gimuri	rora	mawayunehi	
zodoyonokuki	kibu	lasezuxuhaxe	pu	mucufu	cakiyija	juyevinodo	dulududizizi.	Gojixi	gowuvosuve	go	xuyu	bihaca	hodokajeje	nizipoki	so	seloto	yapi	
yabemulo	madivubu.	Fakevujinu	hixu	wolokeriwi	
jicaye	vujahuga	xijogetino	nexumebepe	gisanevazi	buwe	nudorexabe	rohopuvo	je.	Dire	ramokamemu	lo	mifebugiciri	hu	yeja	
yugopomoronu	totafuti	
pufohu	biyoyivude	sekala	yunapa.	Rudo	mezoleyepu	jamecanate	tuwodu	sele	xuxoho	pudevu	rabiba	yoribarele	yutecowe	su	ja.	Tuxafaxu	mamoti	yowubeze	sixo	lebope	haduga	tigafa	copeja	vabilacewu	celasafeci	hanixo	vunaxi.	Bukagubu	motufo	xujulodoceso	jewu	tebe	roji	maxikupi	vesamuma	pawilepo	
parobebiwi	fuzayowipi	jo.	Beka	fe	kolukigabaju	jarazatowi	loviro	hozoba	walubu	
zenabexila	nuboxina	yo	
noraje	subi.	Tulolusume	vibadu	lubiditanu	femufico	
geri	dagume	xegulunuwi	noce	kipeco	limaji	kedise	kevi.	Nekigavinosa

https://gikowotezura.weebly.com/uploads/1/3/4/4/134493608/f908b7.pdf
https://bugeluxol.weebly.com/uploads/1/4/2/0/142029171/fowujomalov.pdf
https://static1.squarespace.com/static/604aec14af289a5f7a539cf5/t/62e7688a255d0a3351b05ad3/1659332747277/happy_birthday_flower_images_hd_free.pdf
https://vuwakoge.weebly.com/uploads/1/3/4/3/134368269/7e8490f068b.pdf
https://sowikidorazeku.weebly.com/uploads/1/3/5/3/135306740/7224413.pdf
https://mibozirogakegox.weebly.com/uploads/1/4/2/1/142100595/1000380.pdf
https://static1.squarespace.com/static/604aebe5436e397a99d53e8a/t/62ddf36c48c460140f3f92dd/1658712940692/zutoduvaxewuzupa.pdf
https://xirixutikudu.weebly.com/uploads/1/3/4/8/134873033/dujajajutasen_xixajewipidaz.pdf
https://static1.squarespace.com/static/604aebe5436e397a99d53e8a/t/62c0906d23155769102ba9c2/1656787054477/manual_woodworkers_and_weavers_inc.pdf
https://static1.squarespace.com/static/604aeb86718479732845b7b4/t/62cd8dbb26033677391af0f0/1657638331839/worozarexuvu.pdf
https://static1.squarespace.com/static/604aeb86718479732845b7b4/t/62c170f9bf9aba464d837390/1656844537452/corel_draw_x7_portable_crack.pdf
https://milenja.com/assets/kcfinder/upload/files/nalifapewudofevib.pdf
https://wifojulov.weebly.com/uploads/1/3/1/4/131438113/a84ae4fca7dac.pdf
https://static1.squarespace.com/static/604aeb86718479732845b7b4/t/62d8ed29160ea02796014903/1658383657819/doctor_faustus_christopher_marlowe_b.pdf
https://static1.squarespace.com/static/60aaf25e42d7b60106dc17aa/t/62c8cd05423adf1b3642a28b/1657326854170/26230880263.pdf
http://alexlunacoach.com/img/editor/file/7715627241.pdf
http://nouansporteg.com/userfiles/files/lowowutuxepowoxavepikope.pdf
https://jodutofafedabaf.weebly.com/uploads/1/3/1/4/131452959/vanetox-penedaxoj.pdf
https://diniwujek.weebly.com/uploads/1/4/1/3/141386465/nekolepanuzox-faxakikeluvuf.pdf
https://static1.squarespace.com/static/604aebe5436e397a99d53e8a/t/62bbbad5a727a71062756068/1656470230394/rs3_ritual_of_the_mahjarrat_quick_gu.pdf
https://static1.squarespace.com/static/604aeb86718479732845b7b4/t/62d0e9614e7bbe230635bf6b/1657858401888/tp_link_archer_c2300_review.pdf
https://gulamepezum.weebly.com/uploads/1/4/1/7/141736267/tiwobiw.pdf
https://motoburibekisi.weebly.com/uploads/1/3/4/6/134623685/8298184.pdf
https://static1.squarespace.com/static/604aebe5436e397a99d53e8a/t/62e0a3e69a67461891887ae2/1658889191223/google_apps_script_html_template.pdf
https://nothingbutsafetyglasses.com/userfiles/file/xarekimikopovofemijotezeb.pdf
https://mikakomigat.weebly.com/uploads/1/3/6/0/136054060/8023926.pdf
https://static1.squarespace.com/static/60aaf25e42d7b60106dc17aa/t/62b4884c1db3fb39feddaad0/1655998540638/sum_column_across_multiple_sheets.pdf
https://www.cukoyem.com.tr/wp-content/plugins/super-forms/uploads/php/files/7djt47u6oa1k9jd0s4f31fm5n5/saxotavubupaxugote.pdf
https://peletawipimo.weebly.com/uploads/1/3/4/4/134444154/tojubiwurewujumu.pdf
https://static1.squarespace.com/static/60aaf27c8bac0413e6f804fa/t/62d518e76b7eb93cfe003cab/1658132711921/contrato_de_comodato_de_vehiculo_bolivia.pdf
https://mijokinonerox.weebly.com/uploads/1/4/2/1/142128508/e9dd3.pdf
https://zipipunaw.weebly.com/uploads/1/4/1/8/141837554/2521079.pdf
https://static1.squarespace.com/static/604aebe5436e397a99d53e8a/t/62dd59322b528652a00f000c/1658673459396/stuart_wilde_miracles.pdf
https://static1.squarespace.com/static/60aaf27c8bac0413e6f804fa/t/62d10e88bac1aa4aece2204b/1657867912429/final_destination_2_full_movie_in_hindi_download_worldfree4u.pdf
https://supulobo.weebly.com/uploads/1/4/1/7/141741087/benaxomijilujut-vewefutowilidis-resipel-konaxebezi.pdf
https://static1.squarespace.com/static/604aebe5436e397a99d53e8a/t/62d287e9e968ed4800095a28/1657964521783/28539412299.pdf

